SECTION 02__
GEOGRID REINFORCEMENT

PART 1 GENERAL

1.1 SECTION INCLUDES

A. Geosynthetic to provide reinforcement for mechanically stabilized earth retaining structures (walls, slopes and embankments).

B. Reinforced Backfill.

1.2 RELATED SECTIONS

A. Document 00300 - Information Available to Bidders: Geotechnical Report; Bore hole locations and findings of subsurface materials.

B. Section 01400 - Testing and Inspection Services.

C. Section 02200 - Site Preparation.

D. Section 02300 - Earthwork; Excavation and subgrade preparation.

E. Section 02310 - Grading.

F. Section 02315 - Excavation.

G. Section 02316 - Fill and Backfill.

H. Section 02920 - Lawns and Grasses; Ground cover at finished grade.

1.3 REFERENCES

A. American Association of State Highway and Transportation Officials (AASHTO)
 1. AASHTO T289 - Determining pH of Soil for Use in Corrosion Testing.

B. ASTM, International
 1. ASTM D 422 – Gradation of Soils.
 2. ASTM D 424 – Atterberg Limits of Soils.
 5. ASTM D 2167 - Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method.

This information has been carefully compiled by Strata Systems, Inc., and to the best of our knowledge is accurate. Final determination of the suitability of any information or material is the sole responsibility of the user. Structural design shall be performed by a licensed design professional.
12. ASTM D 5818 - Standard Practice for Obtaining Samples of Geosynthetics from a Test Section for Assessment of Installation Damage.

C. Geosynthetic Research Institute (GRI)
1. GRI-GG7 - Carboxyl End Group Content of PET Yarns.
2. GRI-GG8 - Determination of the Number Average Molecular Weight of PET Yarns Based on a Relative Viscosity Value.

D. National Concrete Masonry Association (NCMA)

E. National Highway Institute (NHI) / Federal Highway Administration
1. NHI-00-024 and NHI-00-025 – Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines.

1.4 Design Requirements
A. Design Requirements: Design reinforced soil structure in conformance with the design guidelines of NHI-00-024, NHI-00-025, or National Concrete Masonry Association. Design shall be prepared by a professional engineer registered in the state in which the project is located.

1.5 SUBMITTALS
A. Submit under provisions of Section 01300.
B. Manufacturer's certification that the reinforced soil system components meet the requirements of this specification and the structure design.
C. Mill certification from the polyester fiber manufacturer certifying the molecular weight and carboxyl end group count as specified herein.

This information has been carefully compiled by Strata Systems, Inc., and to the best of our knowledge is accurate. Final determination of the suitability of any information or material is the sole responsibility of the user. Structural design shall be performed by a licensed design professional.
D. A set of detailed design plans sealed by a registered professional engineer licensed in the state of the project. The plans shall include plan and elevation views of each structure, cross sections and all details, dimensions and quantities necessary to construct the structure.

E. Samples: Two samples of each component including:
 1. Geogrid: Nominal 6 inch by 10 inch (150 mm by 250 mm) of each type required.

1.6 QUALITY ASSURANCE

A. Manufacturer Qualifications: System components manufactured by licensees or by companies approved and authorized by the component supplier.

B. Installer Qualifications: Firm with documented experience of at least five projects of similar construction and scope. Include brief description of each project and name and phone number of owner's representative knowledgeable in each listed project.

C. Reinforced Soil System Engineer: Firm with documented experience of at least five projects of similar construction and scope. Include brief description of each project and name and phone number of owner's representative knowledgeable in each listed project.

D. Owner shall provide soil testing and quality assurance inspection during earthwork and slope construction operations. Installer shall provide any quality control testing or inspection not provided by the Owner. Owner's quality assurance program does not relieve the installer of responsibility for quality control and structure performance.

E. Pre-Construction Meeting: Prior to construction of reinforced soil structures, conduct a meeting at the site with the material suppliers, reinforced soil structure installer, and the Contractor to review the reinforced soil structure requirements. Notify the Owner and the Architect at least 3 days in advance of the time of the meeting.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store products in manufacturer's unopened packaging until ready for installation.

B. Prevent excessive mud, fluid concrete, epoxy, or other deleterious materials from coming in contact with system components.

C. Polymeric Materials: During storage, geosynthetic rolls shall be elevated off the ground and adequately covered to protect them from the following: site construction damage, precipitation, extended ultraviolet radiation including sunlight, chemicals that are strong acids or strong bases, flames including welding sparks, excess temperatures, and any other environmental conditions that may damage the physical property values of the geosynthetic.

D. Store and dispose of solvent-based materials, and materials used with solvent-based materials, in accordance with requirements of local authorities having jurisdiction.
1.8 PROJECT CONDITIONS

A. Do not place or compact fill material during wet or freezing weather that prevents achievement of specified compaction requirements.

PART 2 PRODUCTS

2.1 MANUFACTURERS

A. Geogrid: StrataGrid and MicroGrid: Strata Systems, Inc., 380 Dahlonega Road, Suite 200, Cumming, Georgia, 30040. Tel: (770) 888-6688, Toll Free: (800) 680-7750. Fax: (770) 888-6680. Web Site: www.geogrid.com. E-mail: strata@geogrid.com.

B. Substitutions: Not permitted.

2.2 MATERIALS

A. System Description: Reinforced soil structure consists of a mechanically stabilized engineered backfill reinforced with StrataGrid or MicroGrid polyester soil reinforcement products.

B. Geogrid: StrataGrid shall provide the following minimum properties:

<table>
<thead>
<tr>
<th>Property</th>
<th>Method</th>
<th>SG150</th>
<th>SG200</th>
<th>SG350</th>
<th>SG500</th>
<th>SG550</th>
<th>SG600</th>
<th>SG700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tult, Ultimate Tensile Strength</td>
<td>ASTM D6637</td>
<td>1875</td>
<td>3600</td>
<td>5000</td>
<td>6400</td>
<td>8150</td>
<td>9100</td>
<td>11800</td>
</tr>
<tr>
<td>(Method A)</td>
<td>(27.4)</td>
<td>(52.5)</td>
<td>(73.0)</td>
<td>(93.4)</td>
<td>(118.9)</td>
<td>(132.8)</td>
<td>(172.2)</td>
<td></td>
</tr>
<tr>
<td>Ta, Allowable Design Strength</td>
<td>Soil: SW, SP, SM, SC</td>
<td>939</td>
<td>1919</td>
<td>2666</td>
<td>3412</td>
<td>4346</td>
<td>4852</td>
<td>6292</td>
</tr>
<tr>
<td></td>
<td>[Dmax=25mm, D50 < 0.2mm]</td>
<td>(13.7)</td>
<td>(28.0)</td>
<td>(38.9)</td>
<td>(49.8)</td>
<td>(63.4)</td>
<td>(70.8)</td>
<td>(91.8)</td>
</tr>
<tr>
<td></td>
<td>Soil: GW, GP, GM, GC, SW, SP, SM, SC</td>
<td>898</td>
<td>1836</td>
<td>2550</td>
<td>3264</td>
<td>4157</td>
<td>4641</td>
<td>6018</td>
</tr>
<tr>
<td></td>
<td>[Dmax=25mm, D50 < 8mm]</td>
<td>(13.1)</td>
<td>(26.8)</td>
<td>(37.2)</td>
<td>(47.6)</td>
<td>(60.7)</td>
<td>(67.7)</td>
<td>(87.8)</td>
</tr>
<tr>
<td></td>
<td>Soil: GW, GP, GM, GC</td>
<td>765</td>
<td>1564</td>
<td>2172</td>
<td>2780</td>
<td>3541</td>
<td>3954</td>
<td>5127</td>
</tr>
<tr>
<td></td>
<td>[Dmax=50mm, D50 < 20mm]</td>
<td>(11.2)</td>
<td>(22.8)</td>
<td>(31.7)</td>
<td>(40.6)</td>
<td>(51.7)</td>
<td>(57.7)</td>
<td>(74.8)</td>
</tr>
</tbody>
</table>

a. Allowable Tensile Strength (T_a) shall be defined as \(T_{ult} / RF \). Where RF = RF_{CR} x RF_{D} x RF_{ID}. Reduction Factor for Creep (RF_{CR}), Reduction Factor for Durability (RF_{D}), and Reduction Factor for Installation Damage (RF_{ID}).

b. Ultimate Tensile Strength (T_{ult}) shall be the minimum average roll value (MARV) as tested per ASTM D 6637 (Method A).

c. Reduction Factor for Creep (RF_{CR}) shall be based on 75-year design life determined in accordance with ASTM D 5262 or ASTM D 6992. Reduction Factor for Creep (RF_{CR}) shall not be less than 1.5.

d. Reduction Factor for Installation Damage (RF_{ID}) shall be based on reinforced backfill type designated above or reinforced backfill gradation as indicated in

This information has been carefully compiled by Strata Systems, Inc., and to the best of our knowledge is accurate. Final determination of the suitability of any information or material is the sole responsibility of the user. Structural design shall be performed by a licensed design professional.
the approved shop drawings or specifications. Installation damage testing and material sampling shall be in conformance with ASTM D 6637 and ASTM D 5818. Reduction Factor for Installation Damage (RF_{ID}) shall not be less than 1.05.

e. Reduction Factor for Durability (RF_{D}) shall be based on polyester fiber testing. Polyester fiber shall have a molecular weight \(\geq 25,000 \text{ g/m per GRI-GG8} \) and a carboxyl end group (CEG) number \(\leq 30 \) per GRI-GG7. Reduction Factor for Durability (RF_{D}) shall not be less than 1.10.

2. Soil Interaction Coefficient \((C_i) \) value shall be determined from short-term effective stress pullout tests per ASTM D 6706 over the range of normal stresses encountered. The minimum \(C_i \) value shall not be less than 0.7, determined as follows:

\[
C_i = \frac{F}{2L_s \tan(f)}
\]

a. \(F \) = Pullout force per ASTM D 6706, lb/ft (kN/m).
b. \(L_s \) = Geosynthetic embedment length during test, ft (m).
c. \(s_N \) = Effective normal stress, psf (kPa).
d. \(f \) = Effective soil friction angle, degrees.

C. Intermediate or Face Wrap Geogrid: MicroGrid or StrataGrid, as indicated in the approved shop drawings, shall provide the following minimum tensile properties:

1. Intermediate or Face Wrap Geogrid Tensile Requirements

<table>
<thead>
<tr>
<th>Property</th>
<th>Method</th>
<th>SG150 lb/ft (kN/m)</th>
<th>MicroGrid lb/ft (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{ul}), Ultimate Tensile Strength</td>
<td>ASTM D6637 or D4595</td>
<td>1875 (27.4)</td>
<td>2000 (29.2)</td>
</tr>
<tr>
<td>(T_a), Allowable Design Strength</td>
<td>Soil: SW, SP, SM, SC ([D_{max}=25mm, D_{50} < 0.2mm])</td>
<td>939 (13.7)</td>
<td>871 (12.7)</td>
</tr>
<tr>
<td></td>
<td>Soil: GW, GP, GM, GC, SW, SP, SM, SC ([D_{max}=25mm, D_{50} < 8mm])</td>
<td>898 (13.1)</td>
<td>550 (8.0)</td>
</tr>
<tr>
<td></td>
<td>Soil: GW, GP, GM, GC ([D_{max}=50mm, D_{50} < 20mm])</td>
<td>765 (11.2)</td>
<td>550 (8.0)</td>
</tr>
</tbody>
</table>

a. Allowable Tensile Strength \((T_a) \) shall be defined as \(T_{ul} / RF \). Where \(RF = RF_{CR} \times RF_{D} \times RF_{ID} \). Reduction Factor for Creep (RF_{CR}), Reduction Factor for Durability (RF_{D}), and Reduction Factor for Installation Damage (RF_{ID}).
b. Ultimate Tensile Strength \((T_{ul}) \) shall be the minimum average roll value (MARV) as tested per ASTM D 6637 (Method A) or ASTM D 4595.
c. Reduction Factor for Creep (RF_{CR}) shall be based on 75-year design life determined in accordance with ASTM D 5262 or ASTM D 6992. Reduction Factor for Creep (RF_{CR}) shall not be less than 1.5.
d. Reduction Factor for Installation Damage (RF_{ID}) shall be based on reinforced backfill type designated above or reinforced backfill as indicated in the

This information has been carefully compiled by Strata Systems, Inc., and to the best of our knowledge is accurate. Final determination of the suitability of any information or material is the sole responsibility of the user. Structural design shall be performed by a licensed design professional.
This information has been carefully compiled by Strata Systems, Inc., and to the best of our knowledge is accurate. Final determination of the suitability of any information or material is the sole responsibility of the user. Structural design shall be performed by a licensed design professional.
A. Construct reinforced soil structure in accordance with the approved shop drawings and Construction and Quality Control Manual supplied by the manufacturer.

B. Geogrid placement:
 1. Unroll the geogrid and cut to the length indicated in the approved shop drawings.
 2. Place geogrid on level and compacted reinforced fill at locations indicated in the approved shop drawings.
 3. Primary strength direction of the geogrid shall be placed perpendicular to the face of the structure or aligned as indicated in the approved shop drawings.
 4. Pull the geogrid taut to remove slack in the geogrid.
 5. Stake or pin the geogrid near the end to maintain alignment and to prevent development of slack during backfill placement.
 6. Adjacent embedment lengths of geogrid shall abut to provide 100% coverage at elevations requiring geogrid reinforcement, as indicated in the approved shop drawings.
 7. Place a minimum of 3 inches (75 mm) of fill between overlapping layers of geogrid where overlapping occurs behind curves and corners.
 8. Construction vehicles shall not be operated directly on the geogrid. A minimum of 6 inches (150 mm) of fill cover over the geogrid is required for operation of construction vehicles in the reinforced zone.
 9. Turning of vehicles should be avoided to prevent dislocation or damage to the geogrid.
 10. Primary geogrid may not be overlapped or connected mechanically to form splices in the primary strength direction.

C. Reinforced backfill:
 1. Place the reinforced backfill material in maximum compacted lifts of 8 inches (200 mm) and compact to a minimum Standard Proctor Dry Density of 95 percent within -1 to +2 percent of optimum moisture content, per ASTM D 698. Compaction shall be achieved throughout the full lift thickness. Minimum compaction shall meet or exceed the requirements stated or as required by the project specifications, whichever is more stringent.
 2. Use only walk-behind compaction equipment within 3 feet (1 meter) of the structure facing. Use a minimum of 3 passes to compact this zone.
 3. Required level of compaction shall be achieved throughout the entire reinforced backfill zone, as measured from the back of the facing unit to the end of geogrid reinforcement. Reinforced fill zone limits shall be as indicated on the approved shop drawings.
 4. Smooth and level the backfill as indicated so that the geogrid lays flat. Grade shall not slope towards the front face of the structure.
 5. Separate reinforced fill from the adjacent soil with geotextile, as indicated in the approved shop drawings

3.3 FIELD QUALITY CONTROL

A. Quality Assurance: Testing and Inspection will be provided by the Owners Testing Agency as specified in Section 01400 Testing and Inspection Services. Notify the Architect / Owner’s Geotechnical Engineer 72 hours in advance of testing.
B. Quality Control: Testing and Inspection shall be provided by an independent laboratory provided by the Contractor and acceptable to the Architect / Owner’s Geotechnical Engineer.

C. Perform laboratory material tests in accordance with ASTM D 698, D 422, and D 424.

D. Perform in place compaction tests in accordance with the following:
 1. Density Tests: ASTM D 1556, ASTM D 2167, or ASTM D 2922 as appropriate for material tested.

E. Minimum Frequency of Tests, or as stated in the contract documents:
 1. Leveling Pad Trench: A minimum rate of one test per 100 feet (30 m) of trench.
 2. Subgrade Soil: A minimum rate of one test per 50 feet (15 m) length of structure.
 3. Reinforced Backfill:
 a. Conduct gradation and plasticity index test at a minimum rate of one test per 2000 cubic yards (1500 cubic meters) and whenever the appearance and behavior of the backfill changes noticeably.
 b. Compaction control testing of the reinforced backfill should be performed on a regular basis during the entire construction project. Conduct compaction control test (Density and Moisture) at a minimum rate of one test within the reinforced backfill zone per every 5 ft (1.5 m) of vertical height for every 100 ft (30 m) of length, approximately every 500 square feet (45 square meters) of vertical face area.

END OF SECTION